Jump Search Algorithm in JAVA
For example, suppose we have an array arr[] of size n and block (to be jumped) size m. Then we search at the indexes arr[0], arr[m], arr[2m]…..arr[km] and so on. Once we find the interval (arr[km] < x < arr[(k+1)m]), we perform a linear search operation from the index km to find the element x.
Let’s consider the following array: (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610,712). Length of the array is 16. Jump search will find the value of 55 with the following steps assuming that the block size to be jumped is 4.
STEP 1: Jump from index 0 to index 4;
STEP 2: Jump from index 4 to index 8;
STEP 3: Jump from index 8 to index 12;
STEP 4: Since the element at index 12 is greater than 55 we will jump back a step to come to index 8.
STEP 5: Perform linear search from index 8 to get the element 55.
What is the optimal block size to be skipped?
In the worst case, we have to do n/m jumps and if the last checked value is greater than the element to be searched for, we perform m-1 comparisons more for linear search. Therefore the total number of comparisons in the worst case will be ((n/m) + m-1). The value of the function ((n/m) + m-1) will be minimum when m = √n. Therefore, the best step size is m = √n.
Source Code:-
package main.algorithm;
public class JumpSearch {
public static int jumpSearch(int[] arr, int x) {
int n = arr.length;
// Finding block size to be jumped
int step = (int) Math.floor(Math.sqrt(n));
// Finding the block where element is
// present (if it is present)
int prev = 0;
while (arr[Math.min(step, n) - 1] < x) {
prev = step;
step += (int) Math.floor(Math.sqrt(n));
if (prev >= n)
return -1;
}
// Doing a linear search for x in block
// beginning with prev.
while (arr[prev] < x) {
prev++;
// If we reached next block or end of
// array, element is not present.
if (prev == Math.min(step, n))
return -1;
}
// If element is found
if (arr[prev] == x)
return prev;
return -1;
}
// Main program to test function
public static void main(String[] args) {
int arr[] = {0, 1, 1, 2, 3, 5, 8, 13, 21,
34, 55, 89, 144, 233, 377, 610, 712};
int x = 55;
// Find the index of 'x' using Jump Search
int index = jumpSearch(arr, x);
// Print the index where 'x' is located
System.out.println("\nNumber " + x + " is at index " + index);
}
}
Output: Number 55 is at index 10
0 Comments:
Post a Comment