Quick Sort Algorithm in Java - Java Tips & Crack

Quick Sort Algorithm

QuickSort is a Divide and Conquer algorithm. It picks an element as pivot and partitions the given array around the picked pivot. There are many different versions of quickSort that pick pivot in different ways. 

Always pick first element as pivot.
Always pick last element as pivot (implemented below)
Pick a random element as pivot.
Pick median as pivot.
The key process in quickSort is partition(). Target of partitions is, given an array and an element x of array as pivot, put x at its correct position in sorted array and put all smaller elements (smaller than x) before x, and put all greater elements (greater than x) after x. All this should be done in linear time

Pseudo Code for recursive QuickSort function : 


/* low  --> Starting index,  high  --> Ending index */
quickSort(arr[], low, high)
{
    if (low < high)
    {
        /* pi is partitioning index, arr[pi] is now
           at right place */
        pi = partition(arr, low, high);

        quickSort(arr, low, pi - 1);  // Before pi
        quickSort(arr, pi + 1, high); // After pi
    }
}


Partition Algorithm 

There can be many ways to do partition, following pseudo code adopts the method given in CLRS book. The logic is simple, we start from the leftmost element and keep track of index of smaller (or equal to) elements as i. While traversing, if we find a smaller element, we swap current element with arr[i]. Otherwise we ignore current element. 

/* low  --> Starting index,  high  --> Ending index */

quickSort(arr[], low, high)
{
    if (low < high)
    {
        /* pi is partitioning index, arr[pi] is now
           at right place */
        pi = partition(arr, low, high);

        quickSort(arr, low, pi - 1);  // Before pi
        quickSort(arr, pi + 1, high); // After pi
    }
}

Pseudo code for partition()  

/* This function takes last element as pivot, places
   the pivot element at its correct position in sorted
    array, and places all smaller (smaller than pivot)
   to left of pivot and all greater elements to right
   of pivot */

partition (arr[], low, high)
{
    // pivot (Element to be placed at right position)
    pivot = arr[high];  
 
    i = (low - 1)  // Index of smaller element and indicates the 
                   // right position of pivot found so far

    for (j = low; j <= high- 1; j++)
    {
        // If current element is smaller than the pivot
        if (arr[j] < pivot)
        {
            i++;    // increment index of smaller element
            swap arr[i] and arr[j]
        }
    }
    swap arr[i + 1] and arr[high])
    return (i + 1)
}

Illustration of partition() : 

arr[] = {10, 80, 30, 90, 40, 50, 70}
Indexes:  0   1   2   3   4   5   6 

low = 0, high =  6, pivot = arr[h] = 70
Initialize index of smaller element, i = -1

Traverse elements from j = low to high-1
j = 0 : Since arr[j] <= pivot, do i++ and swap(arr[i], arr[j])
i = 0 
arr[] = {10, 80, 30, 90, 40, 50, 70} // No change as i and j 
                                     // are same

j = 1 : Since arr[j] > pivot, do nothing
// No change in i and arr[]

j = 2 : Since arr[j] <= pivot, do i++ and swap(arr[i], arr[j])
i = 1
arr[] = {10, 30, 80, 90, 40, 50, 70} // We swap 80 and 30 

j = 3 : Since arr[j] > pivot, do nothing
// No change in i and arr[]

j = 4 : Since arr[j] <= pivot, do i++ and swap(arr[i], arr[j])
i = 2
arr[] = {10, 30, 40, 90, 80, 50, 70} // 80 and 40 Swapped
j = 5 : Since arr[j] <= pivot, do i++ and swap arr[i] with arr[j] 
i = 3 
arr[] = {10, 30, 40, 50, 80, 90, 70} // 90 and 50 Swapped 

We come out of loop because j is now equal to high-1.
Finally we place pivot at correct position by swapping
arr[i+1] and arr[high] (or pivot) 
arr[] = {10, 30, 40, 50, 70, 90, 80} // 80 and 70 Swapped 

Now 70 is at its correct place. All elements smaller than
70 are before it and all elements greater than 70 are after it.

Source Code:-

 Daily Java Tips Follow Click here👉👉👉  d_programming_ 👈👈👈Official Instagram
package main.algorithm;

// Java implementation of QuickSort
import java.io.*;

class QuickSort{

// A function to swap two elements
public static void swap(int[] arr, int i, int j)
{
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}

/* This function takes last element as pivot, places
the pivot element at its correct position in sorted
array, and places all smaller (smaller than pivot)
to left of pivot and all greater elements to right
of pivot */
static int partition(int[] arr, int low, int high)
{

// pivot variable
int pivot = arr[high];

// Index of smaller element and
// indicates the right position
// of pivot found so far
int i = (low - 1);

for(int j = low; j <= high - 1; j++)
{

// If current element is smaller
// than the pivot
if (arr[j] < pivot)
{

// Increment index of
// smaller element
i++;
swap(arr, i, j);
}
}
swap(arr, i + 1, high);
return (i + 1);
}

/* The main function that implements QuickSort
arr[] --> Array to be sorted,
low --> Starting index,
high --> Ending index
*/
static void quickSort(int[] arr, int low, int high)
{
if (low < high)
{

// pi is partitioning index, arr[p]
// is now at right place
int pi = partition(arr, low, high);

// Separately sort elements before
// partition and after partition
quickSort(arr, low, pi - 1);
quickSort(arr, pi + 1, high);
}
}

// Function to print an array
static void printArray(int[] arr, int size)
{
for(int i = 0; i < size; i++)
System.out.print(arr[i] + " ");

System.out.println();
}

// Main Code
public static void main(String[] args)
{
int[] arr = { 10, 7, 8, 9, 1, 5 };
int n = arr.length;

quickSort(arr, 0, n - 1);
System.out.println("Sorted array: ");
printArray(arr, n);
}
}

// This code is contributed by d programming
Output: Sorted array is
3 7 8 16 18 27

CONVERSATION

0 Comments:

Post a Comment